Classifying Single Trial EEG: Towards Brain Computer Interfacing

نویسندگان

  • Benjamin Blankertz
  • Gabriel Curio
  • Klaus-Robert Müller
چکیده

Driven by the progress in the field of single-trial analysis of EEG, there is a growing interest in brain computer interfaces (BCIs), i.e., systems that enable human subjects to control a computer only by means of their brain signals. In a pseudo-online simulation our BCI detects upcoming finger movements in a natural keyboard typing condition and predicts their laterality. This can be done on average 100–230ms before the respective key is actually pressed, i.e., long before the onset of EMG. Our approach is appealing for its short response time and high classification accuracy (>96%) in a binary decision where no human training is involved. We compare discriminative classifiers like Support Vector Machines (SVMs) and different variants of Fisher Discriminant that possess favorable regularization properties for dealing with high noise cases (inter-trial variablity).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring.

Machine learning methods are an excellent choice for compensating the high variability in EEG when analyzing single-trial data in real-time. This paper briefly reviews preprocessing and classification techniques for efficient EEG-based brain-computer interfacing (BCI) and mental state monitoring applications. More specifically, this paper gives an outline of the Berlin brain-computer interface ...

متن کامل

Autocorrelation based EEG Dynamics depicting Motor Intention

Introduction: Movement intention detection is useful for intuitive movement based Brain-computer interfacing (BCI). Various oscillatory cortical processes are involved in voluntary movement generation. We explore the fundamental brain processes underpinning movement intention by studying the temporal dynamics of EEG. A novel autocorrelation based feature was used to identify movement intention ...

متن کامل

Classifying Single-Trial EEG during Motor Imagery with a Small Training Set

Before the operation of a motor imagery based brain-computer interface (BCI) adopting machine learning techniques, a cumbersome training procedure is unavoidable. The development of a practical BCI posed the challenge of classifying single-trial EEG with a small training set. In this letter, we addressed this problem by employing a series of signal processing and machine learning approaches to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001